Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Access Microbiology ; 2023.
Article in English | EuropePMC | ID: covidwho-2261606

ABSTRACT

Despite seminal advances towards understanding the infection mechanism of SARS-CoV-2, it continues to cause significant morbidity and mortality worldwide. Though mass immunization programs have been implemented in several countries, the viral transmission cycle has shown a continuous progression in the form of multiple waves. A constant change in the frequencies of dominant viral lineages, arising from the accumulation of nucleotide variations (NVs) through favourable selection, is understandably expected to be a major determinant of disease severity and possible vaccine escape. Indeed, worldwide efforts have been initiated to identify specific virus lineage(s) and/or NVs that may cause a severe clinical presentation or facilitate vaccination breakthrough. Since host genetics is expected to play a major role in shaping virus evolution, it is imperative to study role of genome-wide SARS-CoV-2 NVs across various populations. In the current study, we analysed the whole genome sequence of 3543 SARS-CoV-2 infected samples obtained from the state of Telangana, India (including 210 from our previous study), collected over an extended period from April, 2020 to October, 2021. We present a unique perspective on the evolution of prevalent virus lineages and NVs during this time period. We also highlight presence of specific NVs likely to be associated favourably with samples classified as vaccination breakthroughs. Finally, we report genome-wide intra-host variations (iSNVs) at novel genomic positions. The results presented here provide critical insights into virus evolution over an extended time period and pave the way to rigorously investigate the role of specific NVs in vaccination breakthroughs.

2.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: covidwho-1081877

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 has rapidly turned into a pandemic, infecting millions and causing 1 157 509 (as of 27 October 2020) deaths across the globe. In addition to studying the mode of transmission and evasion of host immune system, analysing the viral mutational landscape constitutes an area under active research. The latter is expected to impart knowledge on the emergence of different clades, subclades, viral protein functions and protein-protein and protein-RNA interactions during replication/transcription cycle of virus and response to host immune checkpoints. In this study, we have attempted to bring forth the viral genomic variants defining the major clade(s) as identified from samples collected from the state of Telangana, India. We further report a comprehensive draft of all genomic variations (including unique mutations) present in SARS-CoV-2 strain in the state of Telangana. Our results reveal the presence of two mutually exclusive subgroups defined by specific variants within the dominant clade present in the population. This work attempts to bridge the critical gap regarding the genomic landscape and associate mutations in SARS-CoV-2 from a highly infected southern region of India, which was lacking to date.


Subject(s)
COVID-19/virology , Genome, Viral , SARS-CoV-2/genetics , COVID-19/epidemiology , Genomics , Humans , India/epidemiology , Mutation , Phylogeny , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL